
Quartz 2D
Tópicos selecionados de iOS 5

Helder da Rocha

Objetivos
• Parte I

• Introduzir os conceitos essenciais de Quartz
2D (esta apresentação)

• Demonstrar cada conceito separadamente

• Parte II

• Introdução prática de Quartz2D através de
um exemplo passo-a-passo (no XCode, em
sala de aula)

Pré-requisitos

• Conhecimento básico de C (+Core
Foundation) e Objective-C (+Foundation)

• Experiência prática elementar em Cocoa
ou iOS (você deve ter escrito alguns
programas simples para Mac ou iPhone)

• Saber usar o XCode no seu ambiente

Quartz 2D
• Parte de Core Graphics

• Framework independente de resolução e de dispositivo

• Para

• desenhar

• permitir edição gráfica

• criar ou exibir imagens

• Principal fonte desta apresentação:

• Drawing With Quartz 2D (Apple)

Sumário
1.Quartz 2D: introdução, contextos e UIKit
2.Caminhos
3.Cores
4.Transformadas
5.Padrões, sombras e gradientes
6.Grupos (transparency layers)
7.Imagens
8.Camadas (CGLayer)
9.Texto (apenas demonstração)

Figure 1-‐1 shows how the painter’s model works. To get the image in the top part of the figure, the shape on
the left was drawn first followed by the solid shape. The solid shape overlays the first shape, obscuring all but
the perimeter of the first shape. The shapes are drawn in the opposite order in the bottom of the figure, with
the solid shape drawn first. As you can see, in the painter’s model the drawing order is important.

Figure 1-1 The painter’s model

The page may be a real sheet of paper (if the output device is a printer); it may be a virtual sheet of paper (if
the output device is a PDF file); it may even be a bitmap image. The exact nature of the page depends on the
particular graphics context you use.

Drawing Destinations: The Graphics Context
A graphics context is an opaque data type (CGContextRef) that encapsulates the information Quartz uses
to draw images to an output device, such as a PDF file, a bitmap, or a window on a display. The information
inside a graphics context includes graphics drawing parameters and a device-‐specific representation of the
paint on the page. All objects in Quartz are drawn to, or contained by, a graphics context.

Overview of Quartz 2D
Drawing Destinations: The Graphics Context

2010-‐11-‐19 | © 2001, 2010 Apple Inc. All Rights Reserved.

17

1. Quartz 2D

• Página: “painter’s model”

• Cada operação de
desenho “pinta” em uma
“página”

• Pintura pode ser
modificada aplicando-se
outras operações
(sobrepondo mais
“tinta”)

* Fonte: Drawing with Quartz 2D (Apple)

You can think of a graphics context as a drawing destination, as shown in Figure 1-‐2. When you draw with
Quartz, all device-‐specific characteristics are contained within the specific type of graphics context you use. In
other words, you can draw the same image to a different device simply by providing a different graphics
context to the same sequence of Quartz drawing routines. You do not need to perform any device-‐specific
calculations; Quartz does it for you.

Figure 1-2 Quartz drawing destinations

Window

Drawing

LayerPrinter

BitmapPDF

These graphics contexts are available to your application:

 ● A bitmap graphics context allows you to paint RGB colors, CMYK colors, or grayscale into a bitmap. A
bitmap is a rectangular array (or raster) of pixels, each pixel representing a point in an image. Bitmap
images are also called sampled images . See “Creating a Bitmap Graphics Context” (page 34).

 ● A PDF graphics context allows you to create a PDF file. In a PDF file, your drawing is preserved as a
sequence of commands. There are some significant differences between PDF files and bitmaps:

 ● PDF files, unlike bitmaps, may contain more than one page.

 ● When you draw a page from a PDF file on a different device, the resulting image is optimized for the
display characteristics of that device.

 ● PDF files are resolution independent by nature—the size at which they are drawn can be increased
or decreased infinitely without sacrificing image detail. The user-‐perceived quality of a bitmap image
is tied to the resolution at which the bitmap is intended to be viewed.

See “Creating a PDF Graphics Context” (page 29).

Overview of Quartz 2D
Drawing Destinations: The Graphics Context

2010-‐11-‐19 | © 2001, 2010 Apple Inc. All Rights Reserved.

18

Contexto gráfico
• CGContextRef

• Um tipo de dados opaco:
PDF, janela, bitmap, etc.

• Bitmap: RGB, CMYK, cinza

• PDF: múltiplas páginas,
independe de resolução

• Janela: desenha em um UIView

• Camada (CGLayerRef):
performance e + facilidades em
apps gráficas

* Fonte: Drawing with Quartz 2D (Apple)

Tipos de dados opacos
• CGPathRef

• CGImageRef

• CGLayerRef

• CGPatternRef

• CGShadingRef e CGGradientRef

• CGFunctionRef

• CGColorRef e CGColorSpaceRef

• CGImageSourceRef e CGImageDestinationRef

• CGFontRef

• CGPDF*Ref

Objetos que podem ser
manipulados e exibidos no

contexto

Estados gráficos
• Contexto acumula estados

• CTM (transformadas)

• Área de clipping

• Atributos de linha (espessura, etc.)

• Cor atual e valor alfa

• Fonte

• Filtros (blend mode)

• Pode-se guardar e recuperar o estado do contexto

• CGContextSaveGState e CGContextRestoreGState

Discussed in this chapterParameters

“Color and Color Spaces” (page 68)Rendering intent

“Color and Color Spaces” (page 68)Color space: fill and stroke settings

“Text” (page 212)Text: font, font size, character spacing, text
drawing mode

“Paths” (page 42) and “Bitmap Images and Image
Masks” (page 146)

Blend mode

Quartz 2D Coordinate Systems
A coordinate system, shown in Figure 1-‐4, defines the range of locations used to express the location and sizes
of objects to be drawn on the page. You specify the location and size of graphics in the user-‐space coordinate
system, or, more simply, the user space. Coordinates are defined as floating-‐point values.

Figure 1-4 The Quartz coordinate system

(0,0)

y-axis

x-axis

Because different devices have different underlying imaging capabilities, the locations and sizes of graphics
must be defined in a device-‐independent manner. For example, a screen display device might be capable of
displaying no more than 96 pixels per inch, while a printer might be capable of displaying 300 pixels per inch.
If you define the coordinate system at the device level (in this example, either 96 pixels or 300 pixels), objects
drawn in that space cannot be reproduced on other devices without visible distortion. They will appear too
large or too small.

Quartz accomplishes device independence with a separate coordinate system—user space—mapping it to
the coordinate system of the output device—device space—using the current transformationmatrix, or CTM.
A matrix is a mathematical construct used to efficiently describe a set of related equations. The current

Overview of Quartz 2D
Quartz 2D Coordinate Systems

2010-‐11-‐19 | © 2001, 2010 Apple Inc. All Rights Reserved.

22

Sistemas de coordenadas
• User space (lógico)

• Device space (físico)

• iPhone 3 320x480

• iPhone 4 640x960

• CTM (Current Transformation
Matrix) mapeia entre um e outro

• Affine transform

• Suporta redimensionamento,
rotação, translação

• User space em iOS (em um
UIView) é invertido

Recursos gráficos do UIKit
• Objetos (afetam contexto dentro de drawRect:)

• UIColor
UIColor *aColor = [UIColor redColor];
[UIColor colorWithRed:green:blue:alpha:]

• Definindo cor do contexto no UIView
[aColor setFill]; [aColor setFillStroke];

• UIImage
[UIImage imageNamed:]
[UIImage imageWithData:]

• Texto
[NSString drawAtPoint:withFont:]
[NSString drawInRect:]
[UIFont fontWithName:size:]

• Estruturas e valores comuns
CGFloat x, y, height, width;
CGPoint p = CGPointMake(x, y);
CGRect r = CGRectMake(x, y, height, width);

Conversão de coordenadas
• UIImage que contém um CGImage já faz isto automaticamente

CGImageRef cgImg = [uiImg CGImage]; // uiImg.CGImage 
UIImage * uiImg = [UIImage imageWithCGImage: cgImg];

• Para criar novas imagens, trabalhar no contexto CG e depois gerar
uma nova UIImage, é necessário mudar o sistema de coordenadas

CGContextTranslateCTM(ctx, 0, uiImage.size.height); 
CGContextScaleCTM(ctx, 1.0, -1.0);

system is modified, the result is also modified, as if the image were reflected in a mirror. In Figure 1-‐5, passing
the same parameters into Quartz results in a clockwise arc in the default coordinate system and a
counterclockwise arc after the y-‐coordinate is negated by the transform.

Figure 1-5 Modifying the coordinate system creates a mirrored image.

Modified CoordinatesDefault Coordinates

y

y

x(0,0)

(0,0) x

flipped_coordinates.eps
Cocoa Drawing
Apple Computer, Inc.
February 9, 2006

It is up to your application to adjust any Quartz calls it makes to a context that has a transform applied to it.
For example, if you want an image or PDF to draw correctly into a graphics context, your application may need
to temporarily adjust the CTM of the graphics context. In iOS, if you use a UIImage object to wrap a CGImage
object you create, you do not need to modify the CTM. The UIImage object automatically compensates for
the modified coordinate system applied by UIKit.

Overview of Quartz 2D
Quartz 2D Coordinate Systems

2010-‐11-‐19 | © 2001, 2010 Apple Inc. All Rights Reserved.

24

* Fonte: Drawing with Quartz 2D (Apple)

Gerência de memória em CF:
posse dos objetos

• Quartz usa o modelo do Core Foundation (reference counting)

• CFRelease(objeto) e CFRetain(objeto) para controlar o RC

• Se objeto for obtido de uma função que possui as palavras Create ou
Copy, a posse do objeto é transferida e não será mais
responsabilidade do CF liberá-lo (será preciso chamar CFRelease()
para liberá-lo)

• Se objeto não for obtido de uma dessas funções, ele não deve ser
liberado, já que a posse é retida pelo CF que tem a responsabilidade de
liberar a memória.

• Se você não possui um objeto e precisa mantê-lo, use CFRetain para
obter a posse do objeto e depois CFRelease quando não precisar
mais

• Objetos CG têm métodos CG<Objeto>Retain e
CG<Objeto>Release que são melhores* que CFRetain(objeto) e
CFRelease(objeto)

* não falha se for NULL e é mais legível

Conversão UIKit - CF/CG
• Alguns objetos permitem cast direto (se não estiver usando ARC)

CFStringRef cfString = (CFStringRef) nsString;

NSString * nsString = (NSString *) cfString;

• Se UIKit estiver usando ARC (Automatic Reference Counting)
não é permitido fazer casts diretos (toll-free bridging) entre
Core Foundation e Foundation/UIKit!

• É preciso qualificar a transferência (ou não) informando a posse
do objeto (para CF ou ARC) usando __bridge,
__bridge_transfer ou __bridge_retain

CFStringRef cfString = (_bridge CFStringRef) nsString;

NSString * nsString = (_bridge NSString *) cfString;

• UIImage <=> CGImageRef usa uma operação de conversão:

CGImageRef cgImg = [UIImage CGImage];

UIImage * uiImg = [UIImage imageWithCGImage: cgImg];

Contexto gráfico
• CGContextRef

• Para obter um contexto gráfico no UIView

• Implemente o método drawRect: que automaticamente cria
um contexto gráfico (e o configura para as coordenadas do
UIView). Para obtê-lo:

CGContextRef ctx = UIGraphicsGetCurrentContext();

• Outros contextos gráficos

• PDF: CGPDFContextCreateWithURL(...) e
CGPDFContextCreate(...)

• Bitmap: UIGraphicsBeginImageContextWithOptions(...) -
ideal para desenhar offscreen não é usar este objeto, mas
CGLayers

Exemplo: desenho no contexto
#import "GraphicsViewControllerView.h"

@implementation GraphicsViewControllerView

- (id)initWithFrame:(CGRect)frame {
 self = [super initWithFrame:frame];
 if (self) {
 // Initialization code
 }
 return self;
}

- (void)drawRect:(CGRect)rect {

 CGContextRef ctx = UIGraphicsGetCurrentContext();

 CGContextSetRGBFillColor (ctx, 1, 0, 0, 1); //3
 CGContextFillRect (ctx, CGRectMake (0, 0, 200, 100)); //4
 CGContextSetRGBFillColor (ctx, 0, 0, 1, .5); //5
 CGContextFillRect (ctx, CGRectMake (0, 0, 100, 200)); //6
}

@end

2. Caminhos

• Uma ou mais figuras
vetoriais ou subcaminhos
feitas de linhas e/ou curvas

• Pode ser aberto ou
fechado

• Pode ser uma figura,
linha, desenho

• Tem um preenchimento
(fill) e um traço (stroke)

Figure 3-‐2 shows a path that has been painted and that contains two subpaths. The subpath on the left is a
rectangle, and the subpath on the right is an abstract shape made up of straight lines and curves. Each subpath
is filled and its outline stroked.

Figure 3-2 A path that contains two shapes, or subpaths

Figure 3-‐3 shows multiple paths drawn independently. Each path contains a randomly generated curve, some
of which are filled and others stroked. Drawing is constrained to a circular area by a clipping area.

Figure 3-3 A clipping area constrains drawing

Paths
Path Creation and Path Painting

2010-‐11-‐19 | © 2001, 2010 Apple Inc. All Rights Reserved.

43

Figure 3-‐2 shows a path that has been painted and that contains two subpaths. The subpath on the left is a
rectangle, and the subpath on the right is an abstract shape made up of straight lines and curves. Each subpath
is filled and its outline stroked.

Figure 3-2 A path that contains two shapes, or subpaths

Figure 3-‐3 shows multiple paths drawn independently. Each path contains a randomly generated curve, some
of which are filled and others stroked. Drawing is constrained to a circular area by a clipping area.

Figure 3-3 A clipping area constrains drawing

Paths
Path Creation and Path Painting

2010-‐11-‐19 | © 2001, 2010 Apple Inc. All Rights Reserved.

43

Componentes: pontos e linhas

• Pontos

• CGPoint ou par de CGFloat

• CGContextMoveToPoint(ctx, x0, y0)

• Move para o ponto atual: current point

• Linhas

• CGContextAddLineToPoint(ctx, x1, y1)

• Desenha uma linha a partir do current point, até um ponto
final, que se torna o current point

• Chamadas sucessivas, criam um desenho formado por várias
linhas conectadas

Componentes: arcos
• Arcos

• CGContextAddArc(ctx, cy, cx, r, angi, angf, dir)  
adiciona um arco em uma posição cx, cy

• cy, cx - centro

• r - raio

• angi, angf - ângulo inicial e final (0 a 2*M_PI faz um
círculo)

• dir - 1: sentido horário, 0: sentido anti-horário

• CGContextAddArcToPoint(ctx, x1, y1, x2, y2, r)
conecta um arco tangencialmente a duas linhas

• x1, y1, e x2, y2 - pontos tangenciais

• r - raio

The function CGContextAddArcToPoint is ideal to use when you want to round the corners of a rectangle.
Quartz uses the endpoints you supply to create two tangent lines. You also supply the radius of the circle from
which Quartz slices the arc. The center point of the arc is the intersection of two radii, each of which is
perpendicular to one of the two tangent lines. Each endpoint of the arc is a tangent point on one of the tangent
lines, as shown in Figure 3-‐5. The red portion of the circle is what’s actually drawn.

Figure 3-5 Defining an arc with two tangent lines and a radius

Tangent
point 1

Radius

Tangent
line 1

Tangent
line 2

Tangent
point 2

If the current path already contains a subpath, Quartz appends a straight line segment from the current point
to the starting point of the arc. If the current path is empty, Quartz creates a new subpath at the starting point
for the arc and does not add the initial straight line segment.

Curves
Quadratic and cubic Bézier curves are algebraic curves that can specify any number of interesting curvilinear
shapes. Points on these curves are calculated by applying a polynomial formula to starting and ending points,
and one or more control points. Shapes defined in this way are the basis for vector graphics. A formula is much
more compact to store than an array of bits and has the advantage that the curve can be re-‐created at any
resolution.

Paths
The Building Blocks

2010-‐11-‐19 | © 2001, 2010 Apple Inc. All Rights Reserved.

46

Componentes: curvas
• Bezier quadrática (um ponto de controle) e cúbica (dois pontos -

default); ponto inicial é o current point

• Bézier cúbica

• CGContextAddCurveToPoint (ctx, cp1x, cp1y, cp2x, cp2y, x, y)

• Bézier quadrática

• CGContextAddQuadCurveToPoint(ctx, cpx, cpy, x, y)

Figure 3-‐6 shows a variety of curves created by drawing multiple paths independently. Each path contains a
randomly generated curve; some are filled and others are stroked.

Figure 3-6 Multiple paths; each path contains a randomly generated curve

The polynomial formulas that give to rise to quadratic and cubic Bézier curves, and the details on how to
generate the curves from the formulas, are discussed in many mathematics texts and online sources that
describe computer graphics. These details are not discussed here.

You use the function CGContextAddCurveToPoint to append a cubic Bézier curve from the current point,
using control points and an endpoint you specify. Figure 3-‐7 shows the cubic Bézier curve that results from
the current point, control points, and endpoint shown in the figure. The placement of the two control points
determines the geometry of the curve. If the control points are both above the starting and ending points, the
curve arches upward. If the control points are both below the starting and ending points, the curve arches
downward. If the second control point is closer to the current point (starting point) than the first control point,
the curve crosses over itself, creating a loop.

Figure 3-7 A cubic Bézier curve uses two control points

Point 1
Current point

Point 3
Control point

Point 4
Endpoint

Point 2
Control point

Paths
The Building Blocks

2010-‐11-‐19 | © 2001, 2010 Apple Inc. All Rights Reserved.

47

You can append a quadratic Bézier curve from the current point by calling the function
CGContextAddQuadCurveToPoint, and specifying a control point and an endpoint. Figure 3-‐8 shows two
curves that result from using the same endpoints but different control points. The control point determines
the direction that the curve arches. It’s not possible to create as many interesting shapes with a quadratic
Bézier curve as you can with a cubic one because quadratic curves use only one control point. For example,
it’s not possible to create a crossover using a single control point.

Figure 3-8 A quadratic Bézier curve uses one control point

A Current point

B Control point

C Endpoint A Current point

B Control point

C Endpoint

Closing a Subpath
To close the current subpath, your application should call CGContextClosePath. This function adds a line
segment from the current point to the starting point of the subpath and closes the subpath. Lines, arcs, and
curves that end at the starting point of a subpath do not actually close the subpath. You must explicitly call
CGContextClosePath to close a subpath.

Some Quartz functions treat a path’s subpaths as if they were closed by your application. Those commands
treat each subpath as if your application had called CGContextClosePath to close it, implicitly adding a line
segment to the starting point of the subpath.

After closing a subpath, if your application makes additional calls to add lines, arcs, or curves to the path, Quartz
begins a new subpath starting at the starting point of the subpath you just closed.

Paths
The Building Blocks

2010-‐11-‐19 | © 2001, 2010 Apple Inc. All Rights Reserved.

48

Fechamento

• Um caminho pode ser fechado chamando-
se CGContextClosePath(ctx)

• Desenha uma linha fechando o caminho

• Qualquer nova chamada a operações de
movimento ou desenho de pontos, criará
um novo caminho

Elipses e retângulos

• CGContextAddRect

• CGContextAddRects

• CGContextAddEllipseInRect

Reuso de caminhos
• Caminhos podem ser criados e reusados

• CGContextBeginPath(ctx)

• Marca o início de um caminho no contexto atual

• Termina com CGContextClosePath(ctx)

• CGMutablePathRef path = CGPathCreateMutable()

• Referência para o caminho; métodos operam sobre o caminho e
não sobre contexto:

• CGPathMoveToPoint, CGPathAddLineToPoint, CGPathAddArc,
etc.

• Para fechar, CGPathCloseSubpath(path)

• CGContextAddPath adiciona caminho no contexto

• É preciso liberar memória CGPathRelease(path)

Pintura de caminhos

• CGContextStrokePath(ctx) - contorna o
desenho com um traço

• CGContextFillPath(ctx) - preenche o desenho

• CGContextDrawPath(ctx, modo)

• kCGPathFill, kCGPathFillStroke,
kCGPathSroke, kCGPathEOFill, etc.

You can opt to use the even-odd rule. To determine whether a specific point should be painted, start at the
point and draw a line beyond the bounds of the drawing. Count the number of path segments that the line
crosses. If the result is odd, the point is painted. If the result is even, the point is not painted. The direction that
the path segments are drawn doesn’t affect the outcome. As you can see in Figure 3-‐12, it doesn’t matter which
direction each circle is drawn, the fill will always be as shown.

Figure 3-12 Concentric circles filled using different fill rules

Winding-number Even-odd

Quartz provides the functions shown in Table 3-‐5 for filling the current path. Some are convenience functions
for stroking rectangles or ellipses.

Table 3-5 Functions that fill paths

DescriptionFunction

Fills the current path using the even-‐odd rule.CGContextEOFillPath

Fills the current path using the nonzero winding number rule.CGContextFillPath

Fills the area that fits inside the specified rectangle.CGContextFillRect

Fills the areas that fits inside the specified rectangles.CGContextFillRects

Fills an ellipse that fits inside the specified rectangle.CGContextFillEllipseInRect

Fills the current path if you pass kCGPathFill (nonzero winding number
rule) or kCGPathEOFill (even-‐odd rule). Fills and strokes the current path
if you pass kCGPathFillStroke or kCGPathEOFillStroke.

CGContextDrawPath

Setting Blend Modes
Blendmodes specify how Quartz applies paint over a background. Quartz uses normal blend mode by default,
which combines the foreground painting with the background painting using the following formula:

result = (alpha * foreground) + (1 - alpha) * background

Paths
Painting a Path

2010-‐11-‐19 | © 2001, 2010 Apple Inc. All Rights Reserved.

56

Atributos de linha

• CGContextSetLineWidth

• CGContextSetLineJoin

• CGContextSetLineCap

• CGContextSetMiterLimit

• CGContextSetLineDash

• ...

Figure 3-‐2 shows a path that has been painted and that contains two subpaths. The subpath on the left is a
rectangle, and the subpath on the right is an abstract shape made up of straight lines and curves. Each subpath
is filled and its outline stroked.

Figure 3-2 A path that contains two shapes, or subpaths

Figure 3-‐3 shows multiple paths drawn independently. Each path contains a randomly generated curve, some
of which are filled and others stroked. Drawing is constrained to a circular area by a clipping area.

Figure 3-3 A clipping area constrains drawing

Paths
Path Creation and Path Painting

2010-‐11-‐19 | © 2001, 2010 Apple Inc. All Rights Reserved.

43

Clipping
• Em vez de desenhar um caminho

(CGContextDrawPath, etc.) pode-se  
defini-lo como uma área de recorte  
(clipping) associada ao contexto: CGContextClip

• Ou CGContextEOClip, etc.
CGContextBeginPath (c); 
CGContextAddArc(c, w/2, h/2, ((w>h)?h:w)/2, 0, 2*PI, 0); 
CGContextClosePath (c); 
CGContextClip(c);

• O clipping afeta o contexto (que não mais usa toda a
área disponível para desenhar)

• Se já houver um clipping anterior, o novo será
combinado com ele

• Para recuperar o estado anterior do contexto, deve-se
guardá-lo

• CGContextSaveGState(c)

• CGContextRestoreGState(c)

Filtros de composição
(blend modes)

• Define o que acontece quando um objeto opaco
(caminho, imagem, desenho) é desenhado sobre outro

• Blend-modes se acumulam no contexto

• Se necessário, grave o estado anterior do contexto
(CGContextSaveGState) para recuperar o estado
anterior do contexto posteriormente
(CGContextRestoreGState)

• CGContextSetBlendMode(ctx, filtro)

• filtro = kCGBlendMode*

Flitros de composição (blend modes)
kCGBlendMode*

• Normal (default)
resultado = (a * fg) + (1 - a) * bg

• Multiply  
kCGBlendModeMultiply

• Screen 
kCGBlendModeScreen

• Overlay  
kCGBlendModeOverlay

• Darken 
kCGBlendModeDarken

• Lighten  
kCGBlendModeLighten

• Color Dodge 
kCGBlendModeColorDodge

• Color Burn 
kCGBlendModeColorBurn

• Soft Light  
kCGBlendModeSoftLight

• Hard Light 
kCGBlendModeHardLight

• Difference  
kCGBlendModeDifference

• Exclusion 
kCGBlendModeExclusion

• Hue  
kCGBlendModeHue

• Saturation 
kCGBlendModeSaturation

• Color 
kCGBlendModeColor

• Luminosity  
kCGBlendModeLuminosity

3. Cores e color spaces

• Cores são representadas por um conjunto
de valores que têm significado em
determinado color space

Espaço Componentes Valores

RGBA red, green, blue, alpha CGFloat

BGR blue, green, red CGFloat

CMYK cyan, magenta, yellow, black CGFloat

HSB Matiz, saturação, brilho ângulo, %, %

Cores e color spaces
• iOS suporta apenas color spaces dependentes do hardware

• Para criar

• CGColorSpaceCreateDeviceGray

• CGColorSpaceCreateDeviceRGB

• CGColorSpaceCreateDeviceCMYK

• Para liberar

• CGColorSpaceRelease(colorSpace)

• Em iOS, UIColor usa RGB e Gray, e pode ser construído ou
decomposto em componentes RGB, monocromáticos ou HSB

• Para a maior parte das aplicações práticas, usar UIColor é
suficiente

UIColor e CGColor
• Obtendo um UIColor partir de componentes do color space

• [UIColor colorWithRed:green:blue:alpha:]

• [UIColor colorWithCGColor]

• [UIColor colorWithHue:saturation:brightness:alpha:]

• Usando valores pré-definidos

• [UIColor redColor]

• [UIColor blueColor]

• [UIColor orangeColor]

• ...

• Operações no contexto

• [UIColor set], [UIColor setFill], [UIColor setStroke]

• CGColor: obtenção dos componentes: 0- red, 1- green, 2- blue, 3- alpha

• const CGFloat * array = CGColorGetComponents(cgColor)

4. Transformadas
• Pode-se operar na matriz de transformações (CTM) para realizar

• Redimensionamento
• Rotação
• Translação

• As operações são feitas em um sistema de coordenadas lógico (que é
mapeado ao sistema físico do dispositivo usado)

• As operações são cumulativas, ordenadas e afetam o estado do contexto

• Transformadas também podem ser realizadas em uma matriz que pode
depois ser aplicada à CTM ou outro componente (affine transforms)CGContextRotateCTM (myContext, radians (22.));

Figure 5-7 An image that is translated, scaled, and then rotated

Original image1 Translate2

Scale3 Rotate4

The order in which you perform multiple transformations matters; you get different results if you reverse the
order. Reverse the order of transformations used to create Figure 5-‐7 and you get the results shown in Figure
5-‐8, which is produced with this code:

CGContextRotateCTM (myContext, radians (22.));

CGContextScaleCTM (myContext, .25, .5);

Transforms
Modifying the Current Transformation Matrix

2010-‐11-‐19 | © 2001, 2010 Apple Inc. All Rights Reserved.

82

CGContextTranslateCTM (myContext, w/4, 0);

Figure 5-8 An image that is rotated, scaled, and then translated

Original image

Rotate

Scale Translate

1

2

43

Creating Affine Transforms
The affine transform functions available in Quartz operate on matrices, not on the CTM. You can use these
functions to construct a matrix that you later apply to the CTM by calling the function CGContextConcatCTM.
The affine transform functions either operate on, or return, a CGAffineTransform data structure. You can
construct simple or complex affine transforms that are reusable.

The affine transform functions perform the same operations as the CTM functions—translation, rotation, scaling,
and concatenation. Table 5-‐1 lists the functions that perform these operations along with information on their
use. Note that there are two functions for each of the translation, rotation, and scaling operations.

Transforms
Creating Affine Transforms

2010-‐11-‐19 | © 2001, 2010 Apple Inc. All Rights Reserved.

83

Transformações CTM e
AffineTransform

• Translação

• CGContextTranslateCTM(c, dx, dy);

• CGAffineTransform transform =  
 CGAffineTransformMakeTranslation(dx, dy);  
CGPathAddRect(path, &transform, rect);

• Rotação

• CGContextRotateCTM(c, radianos);

• CGAffineTransformMakeRotation...

• Redimensionamento

• CGContextScaleCTM(c, px, py);

• CGAffineTransformMakeScale...

5. Padrões, sombras e gradientes

• Padrão: célula contendo um desenho que pode ser usada como
tinta para pintar

• Sombra: uma imagem pintada por baixo de um objeto gráfico, e
frequentemente deslocada e borrada

• Gradiente: uma função de pintura que varia de uma cor para
outra; pode ser radial ou linear

A pattern is a sequence of drawing operations that is repeatedly painted to a graphics context. You can use
patterns in the same way as you use colors. When you paint using a pattern, Quartz divides the page into a
set of pattern cells, with each cell the size of the pattern image, and draws each cell using a callback you
provide. Figure 6-‐1 shows a pattern drawn to a window graphics context.

Figure 6-1 A pattern drawn to a window

The Anatomy of a Pattern
The pattern cell is the basic component of a pattern. The pattern cell for the pattern shown in Figure 6-‐1 (page
89) is shown in Figure 6-‐2. The black rectangle is not part of the pattern; it’s drawn to show where the pattern
cell ends.

Figure 6-2 A pattern cell

2010-‐11-‐19 | © 2001, 2010 Apple Inc. All Rights Reserved.

89

Patterns

A pattern is a sequence of drawing operations that is repeatedly painted to a graphics context. You can use
patterns in the same way as you use colors. When you paint using a pattern, Quartz divides the page into a
set of pattern cells, with each cell the size of the pattern image, and draws each cell using a callback you
provide. Figure 6-‐1 shows a pattern drawn to a window graphics context.

Figure 6-1 A pattern drawn to a window

The Anatomy of a Pattern
The pattern cell is the basic component of a pattern. The pattern cell for the pattern shown in Figure 6-‐1 (page
89) is shown in Figure 6-‐2. The black rectangle is not part of the pattern; it’s drawn to show where the pattern
cell ends.

Figure 6-2 A pattern cell

2010-‐11-‐19 | © 2001, 2010 Apple Inc. All Rights Reserved.

89

Patterns

A shadow is an image painted underneath, and offset from, a graphics object such that the shadow mimics
the effect of a light source cast on the graphics object, as shown in Figure 7-‐1. Text can also be shadowed.
Shadows can make an image appear three dimensional or as if it’s floating.

Figure 7-1 A shadow

Shadows have three characteristics:

 ● An x-‐offset, which specifies how far in the horizontal direction the shadow is offset from the image.

 ● A y-‐offset, which specifies how far in the vertical direction the shadow is offset from the image.

 ● A blur value, which specifies whether the image has a hard edge, as seen in the left side of Figure 7-‐2, or
a diffuse edge, as seen in the right side of the figure.

This chapter describes how shadows work and shows how to use the Quartz 2D API to create them.

Figure 7-2 A shadow with no blur and another with a soft edge

2010-‐11-‐19 | © 2001, 2010 Apple Inc. All Rights Reserved.

107

Shadows
Quartz also lets you specify colors and locations along an axis to create more complex axial gradients, as shown
in Figure 8-‐2. The color at the starting point is a shade of red and the color at the ending point is a shade of
violet. However, there are also five locations on the axis whose color is set to orange, yellow, green, blue, and
indigo, respectively. You can think of the result as six sequential linear gradients along the same axis. Although
the axis used here is the same as that used in Figure 8-‐1 (45 degree angle), it doesn’t have to be. The angle of
the axis is defined by the starting and ending point that you provide.

Figure 8-2 An axial gradient created with seven locations and colors

Figure 8-‐3 shows a radial gradient that varies between a small, bright red circle and a larger black one.

Figure 8-3 A radial gradient that varies between two circles

Gradients
Axial and Radial Gradient Examples

2010-‐11-‐19 | © 2001, 2010 Apple Inc. All Rights Reserved.

113

Padrões: como usar
1.Escrever

a.uma função de callback que desenha o padrão, e

b.um ponteiro para uma estrutura
CGPatternCallbacks

2.Definir o colorspace como sendo um pattern
(CGColorSpaceCreatePattern) e anatomia
(propriedades do padrão) em um objeto CGPattern

3.Especificar o padrão como uma tinta (fill ou stroke)

4.Desenhar com o padrão

Callback e struct
#define PSIZE 16

static void drawStencilStar (void *info, CGContextRef c) {
 int k;
 double r, theta;
 r = 0.8 * PSIZE / 2;
 theta = 2 * M_PI * (2.0 / 5.0); // 144 degrees

 CGContextTranslateCTM (c, PSIZE/2, PSIZE/2);
 CGContextMoveToPoint(c, 0, r);
 for (k = 1; k < 5; k++) {
 CGContextAddLineToPoint (c,
 r * sin(k * theta),
 r * cos(k * theta));
 }
 CGContextClosePath(c);
 CGContextFillPath(c);
}

static const CGPatternCallbacks  
 callbackStruct = {0, &drawStencilStar, NULL};

struct CGPatternCallbacks {
 unsigned int  
 version;
 CGPatternDrawPatternCallback  
 pattern;
 CGPatternReleaseInfoCallback  
 info;
}

Color space e anatomia
• Definir o color space do preenchimento (ou traço) como

sendo um pattern.

• Criar um objeto CGPattern especificando as propriedades
do padrão e passando o struct

CGColorSpaceRef patternSpace =
 CGColorSpaceCreatePattern(NULL);

CGContextSetFillColorSpace(context, patternSpace);

// Ou, se for usar o padrão para desenhar o contorno
// CGContextSetStrokeColorSpace(context, patternSpace);

CGColorSpaceRelease(patternSpace);

CGPatternRef pattern = CGPatternCreate(nil,
 CGRectMake(0, 0, 16, 16),
 CGAffineTransformIdentity, 16, 16,
 kCGPatternTilingNoDistortion,
 FALSE,
 &callbackStruct);

Usar o padrão

float color = {1.0, 0.0, 0.0, 1.0};

CGContextSetFillPattern (context, pattern, &color);

CGContextFillRect(context, CGRectMake(160,160,150,150));

Não esqueça de

 CGPatternRelease(pattern);

Sombras
• CGContextSetShadow afeta todo o contexto

• Recebe: ctx, offset (CGSize) e blur (gaussian)

• Todos os objetos ganham uma sombra (objeto
desenhado com RGBA 0,0,0,1)

• Para evitar que isto ocorra, guarde o estado do contexto
antes de aplicar a sombra

• Sombra pode ter cor CGContextSetShadowWithColor

3. Perform all the drawing to which you want to apply shadows.

4. Restore the graphics state.

Follow these steps to paint with colored shadows:

1. Save the graphics state.

2. Create a CGColorSpace object to ensure that Quartz interprets the shadow color values correctly.

3. Create a CGColor object that specifies the shadow color you want to use.

4. Call the function CGContextSetShadowWithColor, passing the appropriate values.

5. Perform all the drawing to which you want to apply shadows.

6. Restore the graphics state.

The two rectangles in Figure 7-‐3 are drawn with shadows—one with a colored shadow.

Figure 7-3 A colored shadow and a gray shadow

The function in Listing 7-‐1 shows how to set up shadows to draw the rectangles shown in Figure 7-‐3. A detailed
explanation for each numbered line of code appears following the listing.

Listing 7-1 A function that sets up shadows

// 1void MyDrawWithShadows (CGContextRef myContext,

 float wd, float ht);

{

// 2 CGSize myShadowOffset = CGSizeMake (-15, 20);

// 3 float myColorValues[] = {1, 0, 0, .6};

// 4 CGColorRef myColor;

// 5 CGColorSpaceRef myColorSpace;

Shadows
Painting with Shadows

2010-‐11-‐19 | © 2001, 2010 Apple Inc. All Rights Reserved.

109

CGSize offset = CGSizeMake(5.0, 5.0);
CGFloat blur = 0.5;

CGContextSetShadow(context, offset, blur);

...

Gradientes
• Há dois objetos para construir gradientes

• CGShadingRef e CGGradientRef

• O mais simples é CGGradientRef

• Há dois tipos de gradiente

• Radial (varia entre dois círculos ou ponto-
círculo)

• Linear (varia ao longo de uma linha)

• Gradientes podem ter várias cores ao longo do
eixo, variar cores e alfa, e estender cores além dos
limites

Figure 8-‐7 shows an axial gradient that extends at both the starting and ending locations. The line in the figure
shows the axis of the gradient. As you can see, the fill colors correspond to the colors at the starting and ending
points.

Figure 8-7 Extending an axial gradient

Figure 8-‐8 compares a radial gradient that does not use the extension options with one that uses extension
options for both the starting and ending locations. Quartz takes the starting and ending color values and uses
those solid colors to extend the surface as shown. The figure shows the starting and ending circles, and the
axis of the gradient.

Figure 8-8 Extending a radial gradient

Gradients
Extending Color Beyond the End of a Gradient

2010-‐11-‐19 | © 2001, 2010 Apple Inc. All Rights Reserved.

117

Como usar um CGGradient

1.Crie um CGGradientRef (CGGradientCreateWithColorComponents)
com

• color space

• array de dois ou mais componentes de cor (quatro elementos cada)

• array de duas ou mais localizações (ponto onde a cor é aplicada)

• número de ítens em cada array

2.Pinte o gradiente com

• CGContextDrawLinearGradient, ou 
CGContextDrawRadialGradient

• Contexto, opções, início e fim do gradiente

3.Libere o objeto quando terminar

Quartz also lets you specify colors and locations along an axis to create more complex axial gradients, as shown
in Figure 8-‐2. The color at the starting point is a shade of red and the color at the ending point is a shade of
violet. However, there are also five locations on the axis whose color is set to orange, yellow, green, blue, and
indigo, respectively. You can think of the result as six sequential linear gradients along the same axis. Although
the axis used here is the same as that used in Figure 8-‐1 (45 degree angle), it doesn’t have to be. The angle of
the axis is defined by the starting and ending point that you provide.

Figure 8-2 An axial gradient created with seven locations and colors

Figure 8-‐3 shows a radial gradient that varies between a small, bright red circle and a larger black one.

Figure 8-3 A radial gradient that varies between two circles

Gradients
Axial and Radial Gradient Examples

2010-‐11-‐19 | © 2001, 2010 Apple Inc. All Rights Reserved.

113

Obtenção dos componentes
(rgba) de cada cor

 UIColor *startColor = [UIColor brownColor];
 UIColor *middleColor = [UIColor redColor];
 UIColor *endColor = [UIColor whiteColor];

 // ponteiro para componentes (array de CGFloat)
 CGFloat *inicio =

(CGFloat *)CGColorGetComponents([startColor CGColor]);

 CGFloat *meio =
(CGFloat *)CGColorGetComponents([middleColor CGColor]);

 CGFloat *fim =
(CGFloat *)CGColorGetComponents([endColor CGColor]);

Criação do gradiente
 // 1) componentes de cor
 CGFloat colorComponents[12] = {
 inicio[0], inicio[1], inicio[2], inicio[3],
 meio[0],meio[1], meio[2], meio[3],
 fim[0], fim[1], fim[2], fim[3]
 };

 // 2) indices de localização
 CGFloat colorIndices[3] = { 0.0, 0.2, 1.0 };

 // 3) color space
 CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();

 // 3) gradiente
 CGGradientRef gradiente =  
 CGGradientCreateWithColorComponents(
 colorSpace,
 (const CGFloat *)&colorComponents,
 (const CGFloat *)&colorIndices,
 3);

 CGColorSpaceRelease(colorSpace);

Pintura linear

CGGradientRef gradiente = ...

CGContextRef ctx = UIGraphicsGetCurrentContext();

CGRect bounds = [[UIScreen mainScreen] bounds];

CGPoint startPoint, endPoint;
startPoint =  
 CGPointMake(bounds.size.width/2.0, bounds.size.height);
endPoint =  
 CGPointMake(bounds.size.width/2.0, 0.0);

CGContextDrawLinearGradient(ctx, gradiente, startPoint, endPoint, 0);

CGGradientRelease(gradiente);

6. Camadas de transparência
• Agrupamento: dois ou mais objetos combinados

formando um único objeto

• Crie com marcadores:

1.CGContextBeginTransparencyLayer(ctx, NULL)

2.Desenhe os objetos que devem fazer parte do grupo

3.CGContextEndTransparencyLayer (ctx)A transparency layer consists of two or more objects that are combined to yield a composite graphic. The
resulting composite is treated as a single object. Transparency layers are useful when you want to apply an
effect to a group of objects, such as the shadow applied to the three circles in Figure 9-‐1.

Figure 9-1 Three circles as a composite in a transparency layer

2010-‐11-‐19 | © 2001, 2010 Apple Inc. All Rights Reserved.

136

Transparency Layers

If you apply a shadow to the three circles in Figure 9-‐1 without first rendering them to a transparency layer,
you get the result shown in Figure 9-‐2.

Figure 9-2 Three circles painted as separate entities

How Transparency Layers Work
Quartz transparency layers are similar to layers available in many popular graphics applications. Layers are
independent entities. Quartz maintains a transparency layer stack for each context and transparency layers
can be nested. But because layers are always part of a stack, you can’t manipulate them independently.

You signal the start of a transparency layer by calling the function CGContextBeginTransparencyLayer,
which takes as parameters a graphics context and a CFDictionary object. The dictionary lets you provide options
to specify additional information about the layer, but because the dictionary is not yet used by the Quartz 2D
API, you pass NULL. After this call, graphics state parameters remain unchanged except for alpha (which is set
to 1), shadow (which is turned off), blend mode (which is set to normal), and other parameters that affect the
final composite.

After you begin a transparency layer, you perform whatever drawing you want to appear in that layer. Drawing
operations in the specified context are drawn as a composite into a fully transparent backdrop. This backdrop
is treated as a separate destination buffer from the context.

When you are finished drawing, you call the function CGContextEndTransparencyLayer. Quartz composites
the result into the context using the global alpha value and shadow state of the context and respecting the
clipping area of the context.

Transparency Layers
How Transparency Layers Work

2010-‐11-‐19 | © 2001, 2010 Apple Inc. All Rights Reserved.

137

7. Imagens e máscaras

• CGImageRef

• Representa imagens (bitmap) ou máscaras de
imagens

• CGImageCreate: permite especificar todos
os detalhes da criação de um bitmap

• Máscaras

• Um bitmap que especifica uma área a ser
pintada, mas não sua cor

Criação de imagens
• Como obter uma imagem?

• Via UIImage: URL, localmente (bundle), diretório do sistema de arquivos,
NSData. Ex: UIImage *image = [UIImage imageNamed:@"invader.png"];

• Como criar uma imagem

• CGImageCreate

• Precisa especificar toda a informação sobre a imagem (bitmap info,
etc.)

• CGImageSourceCreateImageAtIndex

• Cria a partir de uma fonte

• CGBitmapContextCreateImage

• Cria imagem a partir de um contexto

• CGImageCreateWithImageInRect

• Cria imagem recortando de outra imagem

Criando imagem a
partir de outra

Listing 11-‐1 (page 153) shows code that creates and then draws the subimage. The rectangle that the function
CGContextDrawImage draws the rooster’s head to has dimensions that are twice the dimensions of the
extracted subimage. The listing is a code fragment. You’d need to declare the appropriate variables, create
the rooster image, and dispose of the rooster image and the rooster head subimage. Because the code is a
fragment, it does not show how to create the graphics context that the image is drawn to. You can use any
flavor of graphics context that you’d like. For examples of how to create a graphics context, see “Graphics
Contexts” (page 26).

Figure 11-4 An image, a subimage taken from it and drawn so it’s enlarged

Listing 11-1 Code that creates a subimage and draws it enlarged

myImageArea = CGRectMake (rooster_head_x_origin, rooster_head_y_origin,

 myWidth, myHeight);

mySubimage = CGImageCreateWithImageInRect (myRoosterImage, myImageArea);

myRect = CGRectMake(0, 0, myWidth*2, myHeight*2);

CGContextDrawImage(context, myRect, mySubimage);

Creating an Image from a Bitmap Graphics Context
To create an image from an existing bitmap graphics context, you call the function
CGBitmapContextCreateImage as follows:

CGImageRef myImage;

myImage = CGBitmapContextCreateImage (myBitmapContext);

The CGImage object returned by the function is created by a copy operation. Therefore any subsequent changes
you make to the bitmap graphics context do not affect the contents of the returned CGImage object. In some
cases the copy operation actually follows copy-‐on-‐write semantics, so that the actual physical copy of the bits

Bitmap Images and Image Masks
Creating Images

2010-‐11-‐19 | © 2001, 2010 Apple Inc. All Rights Reserved.

153

 myImageArea = CGRectMake (rooster_head_x_origin,
 rooster_head_y_origin,
 myWidth,
 myHeight);

 mySubimage = CGImageCreateWithImageInRect (myRoosterImage, myImageArea);

 myRect = CGRectMake(0, 0, myWidth*2, myHeight*2);

 CGContextDrawImage(context, myRect, mySubimage);

Aplicação de máscaras
• Permite controlar que parte da imagem é pintada

• CGImageCreateWithMask

• Cria uma imagem resultante da aplicação de uma
máscara de imagem

 ● Equal to 0 allows painting the corresponding image sample at full coverage.

 ● Greater than 0 and less 1 allows painting the corresponding image sample with an alpha value of (1 –
S).

Figure 11-‐5 shows an image created with one of the Quartz image-‐creation functions and Figure 11-‐6 shows
an image mask created with the function CGImageMaskCreate. Figure 11-‐7 (page 157) shows the image that
results from calling the function CGImageCreateWithMask to apply the image mask to the image.

Figure 11-5 The original image

Figure 11-6 An image mask

Bitmap Images and Image Masks
Masking Images

2010-‐11-‐19 | © 2001, 2010 Apple Inc. All Rights Reserved.

156

 ● Equal to 0 allows painting the corresponding image sample at full coverage.

 ● Greater than 0 and less 1 allows painting the corresponding image sample with an alpha value of (1 –
S).

Figure 11-‐5 shows an image created with one of the Quartz image-‐creation functions and Figure 11-‐6 shows
an image mask created with the function CGImageMaskCreate. Figure 11-‐7 (page 157) shows the image that
results from calling the function CGImageCreateWithMask to apply the image mask to the image.

Figure 11-5 The original image

Figure 11-6 An image mask

Bitmap Images and Image Masks
Masking Images

2010-‐11-‐19 | © 2001, 2010 Apple Inc. All Rights Reserved.

156

Note that the areas in the original image that correspond to the black areas of the mask show through in the
resulting image (Figure 11-‐7). The areas that correspond to the white areas of the mask aren’t painted. The
areas that correspond to the gray areas in the mask are painted using an intermediate alpha value that’s equal
to 1 minus the image mask sample value.

Figure 11-7 The image that results from applying the image mask to the original image

Masking an Image with an Image
You can use the function CGImageCreateWithMask to mask an image with another image, rather than with
an image mask. You would do this to achieve an effect opposite of what you get when you mask an image
with an image mask. Instead of passing an image mask that’s created using the function CGImageMaskCreate,
you supply an image created from one of the Quartz image-‐creation functions.

Source samples of an image that is used as a mask (but is not a Quartz image mask) operate as alpha values.
An image sample value (S):

 ● Equal to 1 allows painting the corresponding image sample at full coverage.

 ● Equal to 0 blocks painting the corresponding image sample.

 ● Greater than 0 and less 1 allows painting the corresponding image sample with an alpha value of S.

Figure 11-‐8 (page 158) shows the image that results from calling the function CGImageCreateWithMask to
apply the image shown in Figure 11-‐6 (page 156) to the image shown in Figure 11-‐5 (page 156). In this case,
assume that the image shown in Figure 11-‐6 is created using one of the Quartz image-‐creation functions, such
as CGImageCreate. Compare Figure 11-‐8 with Figure 11-‐7 (page 157) to see how the same sample values,
when used as image samples instead of image mask samples, achieve the opposite effect.

Bitmap Images and Image Masks
Masking Images

2010-‐11-‐19 | © 2001, 2010 Apple Inc. All Rights Reserved.

157

Máscaras
• Máscara de cor: CGImageCreateWithMaskingColors

• Uma imagem

• Um array de componentes de cor para mascarar na imagem

• Máscara recortando o contexto: CGContextClipToMask

• O contexto gráfico que será recortado

• Retângulo onde a máscara será aplicada

• Uma máscara de imagem

The areas in the original image that correspond to the black areas of the image aren’t painted in the resulting
image (Figure 11-‐8). The areas that correspond to the white areas are painted. The areas that correspond to
the gray areas in the mask are painted using an intermediate alpha value that’s equal to the masking image
sample value.

Figure 11-8 The image that results from masking the original image with an image

Masking an Image with Color
The function CGImageCreateWithMaskingColors creates an image by masking one color or a range of
colors in an image supplied to the function. Using this function, you can perform chroma key masking similar
to what’s shown in Figure 11-‐9 (page 158) or you can mask a range of colors, similar to what’s shown in Figure
11-‐11 (page 160), Figure 11-‐12 (page 161), and Figure 11-‐13 (page 162).

The function CGImageCreateWithMaskingColors takes two parameters:

 ● An image that is not an image mask and that is not the result of applying an image mask or masking color
to another image.

 ● An array of color components that specify a color or a range of colors for the function to mask in the image.

Figure 11-9 Chroma key masking

+ =

Bitmap Images and Image Masks
Masking Images

2010-‐11-‐19 | © 2001, 2010 Apple Inc. All Rights Reserved.

158

area with an alpha value of 1–S, where S is the sample value of the image masks. If you draw an image to the
clipped context using the function CGContextDrawImage, you’ll get a result similar to that shown in Figure
11-‐15.

Figure
11-14

A masking image

Figure
11-15

An image drawn to a context after clipping the content with an image mask

Bitmap Images and Image Masks
Masking Images

2010-‐11-‐19 | © 2001, 2010 Apple Inc. All Rights Reserved.

163

area with an alpha value of 1–S, where S is the sample value of the image masks. If you draw an image to the
clipped context using the function CGContextDrawImage, you’ll get a result similar to that shown in Figure
11-‐15.

Figure
11-14

A masking image

Figure
11-15

An image drawn to a context after clipping the content with an image mask

Bitmap Images and Image Masks
Masking Images

2010-‐11-‐19 | © 2001, 2010 Apple Inc. All Rights Reserved.

163

Filtros em imagens
• Desenhe o fundo

• Defina um blend mode para composição da
imagem com o fundo

• Desenhe a imagem

CGContextSetBlendMode (myContext, kCGBlendModeDarken);
CGContextDrawImage (myContext, myRect, myImage2);

The rest of this section uses each of the blend modes available in Quartz to draw the image shown on the right
side of Figure 11-‐17 over the background that consists of the painted rectangles shown on the left side of the
figure. In all cases, the rectangles are first drawn to the graphics context. Then, a blend mode is set by calling
the function CGContextSetBlendMode, passing the appropriate blend mode constant. Finally, the image of
the jumper is drawn to the graphics context.

Figure
11-17

Background drawing (left) and foreground image (right)

Normal Blend Mode
Normal blend mode paints source image samples over background image samples. Normal blend mode is the
default blend mode in Quartz. You only need to explicitly set normal blend mode if you are currently using
another blend mode and want to switch to normal blend mode. You can set normal blend mode by passing
the constant kCGBlendModeNormal to the function CGContextSetBlendMode or by restoring the graphics
state (assuming the previous graphics state used normal blend mode) using the function
CGContextRestoreGState.

Bitmap Images and Image Masks
Using Blend Modes with Images

2010-‐11-‐19 | © 2001, 2010 Apple Inc. All Rights Reserved.

165

Screen Blend Mode
Screen blend mode multiplies the inverse of the source image samples with the inverse of the background
image samples to obtain colors that are at least as light as either of the two contributing sample colors.

You specify screen blend mode by passing the constant kCGBlendModeScreen to the function
CGContextSetBlendMode. Figure 11-‐20 shows the result of using screen blend mode to paint the image
shown in Figure 11-‐17 (page 165) over the rectangles shown in the same figure.

Figure
11-20

Drawing an image over a background using screen blend mode

Overlay Blend Mode
Overlay blend mode either multiplies or screens the source image samples with the background image samples,
depending on the color of the background samples. The result is to overlay the existing image samples while
preserving the highlights and shadows of the background. The background color mixes with the source image
to reflect the lightness or darkness of the background.

Bitmap Images and Image Masks
Using Blend Modes with Images

2010-‐11-‐19 | © 2001, 2010 Apple Inc. All Rights Reserved.

167

8. CGLayer
• Permite desenhar offscreen: sistema faz  

cache de CGLayers; performance!

• Ideal para reusar desenhos (repetir  
desenhos, animação, etc.)

• CGLayerRef layer =  
 CGLayerCreateWithContext(ctx, CGSize, NULL)

• Cria um layer que herda todas as características atuais do contexto

• CGContextRef ctx = CGLayerGetContext(layer)

• Retorna contexto gráfico associado com o layer

• CGContextDrawLayerAtPoint(...) e CGContextDrawLayerInRect(...)

• Desenham o layer em um  
contexto gráfico

Figure 12-2 Layer drawing

LayerCreate

LayerGetContext

DrawLayer

CGLayer Object

Layer context

Graphics context

CGLayer objects (CGLayerRef data type) allow your application to use layers for drawing.

Layers are suited for the following:

 ● High-‐quality offscreen rendering of drawing that you plan to reuse. For example, you might be building
a scene and plan to reuse the same background. Draw the background scene to a layer and then draw
the layer whenever you need it. One added benefit is that you don’t need to know color space or
device-‐dependent information to draw to a layer.

 ● Repeated drawing. For example, you might want to create a pattern that consists of the same item drawn
over and over. Draw the item to a layer and then repeatedly draw the layer, as shown in Figure 12-‐1. Any
Quartz object that you draw repeatedly—including CGPath, CGShading, and CGPDFPage objects—benefits
from improved performance if you draw it to a CGLayer. Note that a layer is not just for onscreen drawing;
you can use it for graphics contexts that aren’t screen-‐oriented, such as a PDF graphics context.

 ● Buffering. Although you can use layers for this purpose, you shouldn’t need to because the Quartz
Compositor makes buffering on your part unnecessary. If you must draw to a buffer, use a layer instead
of a bitmap graphics context.

Figure 12-1 Repeatedly painting the same butterfly image

CGLayer objects and transparency layers are parallel to CGPath objects and paths created by CGContext
functions. In the case of a CGLayer or CGPath object, you paint to an abstract destination and can then later
draw the complete painting to another destination, such as a display or a PDF. When you paint to a transparency
layer or use the CGContext functions that draw paths, you draw directly to the destination represented by a
graphics context. There is no intermediate abstract destination for assembling the painting.

2010-‐11-‐19 | © 2001, 2010 Apple Inc. All Rights Reserved.

179

Core Graphics Layer Drawing

9. Texto

• Esta seção será apresentada apenas como
demonstração no XCode

• Não haverá exercícios usando texto

• Como referência, use o documento
"Drawing with Quartz 2D", capítulo 17.

Fontes de referência

• Apple. Drawing with Quartz 2D Programming
Guide. 11/12/2007

• Apple. Color Management Overview.
07/07/2005

• Apple. Core Image Programming Guide.
12/10.2011

